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Introduction
Coals are much richer in condensed aromatic rings (CARs) than 
other fossil resources [1]. Many processes for converting coals to 
energy, such as gasification and combustion, involve oxidation. In 
addition, coal oxidation under mild conditions is considered to be 
a promising process to obtain valuable chemicals [2,3]. Therefore, 
understanding the mechanisms for the oxidation of CARs in coals 
is of great importance. On the other hand, condensed aromatics 
in liquid fuels are considered to be one of the major sources 
producing undesired exhaust emissions and causing hazardous 
and carcinogenic effects [4]. Converting the condensed aromatics 
to saturated components usually needs high hydrogen pressure 
and expensive catalysts. Alternative technology for removing 
condensed aromatics from liquid fuels should be taken into 
account. Sodium hypochlorite (NaOCl) is an effective oxidant for 
converting CARs in coals to benzenepolyoxylic acids along with 
small amounts of their chloro-substituted analogs and other 
species [5]. However, it is not clear how the CARs are oxidized 
in aqueous sodium hypochlorite solution. In this study, we used 
anthracene as a model compound for condensed aromatics 
in coals and liquid fuels and investigated its oxidation in 
aqueous sodium hypochlorite solution under mild conditions to 
understand how the condensed aromatics are oxidized and how 
to control the oxidation.

Experimental
Anthracene, CH3CN, 37% hydrochloric acid, diazomethane, 
(CH3CH2)2O, aqueous sodium hypochlorite solution (6% available 

chlorine), and anhydrous Na2SO3 are commercially purchased 
analytical reagents. Anthracene was purified by recrystallization 
in methanol followed by vacuum desiccation at 50°C for 2 h. 
Other organic reagents were distilled before use. Anthracene (0.5 
mmol), aqueous sodium hypochlorite solution (20 mL), CH3CN 
(5 mL), and a magnetic stirrer were added into a glass tube 
reactor (inner volume 50 mL) in a J-KEM Synthesizer. The reactor 
was heated to a described temperature (30°C, 40°C or 50°C) 
and the mixture in the reactor was stirred at the temperature 
for a described period of time. After separating the unreacted 
anthracene from the reaction mixture, 1 g anhydrous Na2SO3 was 
added into the reaction mixture to destroy excess NaOCl followed 
by acidification with a proper amount of 37% hydrochloric acid 
to pH 2-3. Then the treated reaction mixture was repeatedly 
extracted with (CH3CH2)2O to afford extract solution. Concentrated 
extract solution was obtained by removing most of (CH3CH2)2O 
from the above extract solution with a Büchi R-210 rotary 
evaporator, esterified with diazomethane in (CH3CH2)2O and 
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analyzed with a Hewlett-Packard 6890/5973 gas chromatograph/
mass spectrometer (GC/MS). The GC is equipped with a capillary 
column coated with HP-5 (cross-link 5% PH ME siloxane, 30 m 
length, 0.25 mm inner diameter, 0.25 µm film thickness). The MS 
is operated in electron impact (70 eV) mode and a quadrupole 
analyzer is used as a mass analyzer.

Results and Discussion
Anthracene were completely converted within 72 h, 48 h and 48 
h when the reaction temperature was set to 30°C, 40°C and 50°C 
respectively. As Figures 1-3 exhibit, 22 compounds were identified 
with GC/MS. The compounds can be classified into non-chloro-
substituted compounds (NCSCs, i.e., peaks 4-6, 10-12, and 15) 
and chloro-substituted compounds (CSCs, i.e., peaks 1-3, 7-9, 13, 
14, and 16-22), as shown in Table 1 and Figure 4. The total yield of 
NCSCs is much higher than that of CSCs, especially in the reaction 
for 96 h. Anthraquinone is the most abundant product and its yield 
increased first and then decreased with prolonging the reaction 
time. In addition, the yield of anthraquinone from anthracene 
oxidation at 40°C is much higher than these at 30°C and 50°C, and 
reached the maximum (74.8%) in the oxidation for 96 h at 40°C. 
These facts indicate that selective formation of NCSCs (especially 
anthraquinone) can be achieved by controlling the reaction 
time and temperature. Interestingly, chlorine-substituted acetic 
acids only appear in the products from anthracene oxidation at 
30°C and 50°C and chloroanthracenes were only detected in the 
products from anthracene oxidation at 40°C, although the reason 
needs investigating. The oxidation of coals [6-10] and their related 
model compounds [11-13] in aqueous sodium hypochlorite 
solution were extensively investigated. The oxidation of wheat 
straw [14] and rice husk [15] in aqueous sodium hypochlorite 
solution was also examined. Superoxide anion radical O2

-. is 
generally considered to be an active intermediate [16-19] for 
oxidizing unsaturated moieties, especially for CARs. However, 
to our knowledge, no reports clarified the mechanisms for the 
formation of O2

- in aqueous sodium hypochlorite solution and the 
reaction of O2

- with CARs. Ref. [20] proposed that O2 can directly 
abstract hydrogen on CARs to induce the oxidation of CARs. 
Such abstraction is extremely difficult, because the resulting aryl 
radicals are quite labile. Similarly, hydrogen abstraction from 
CARs by O2

- is also impossible. As Scheme 1 illustrates, there are 
ionization equilibriums between NaOCl and its resulting Na+ and 
–OCl and between –OCl and its resulting O2

- and Cl2
-. Due to much 

larger superdelocalizablity (1.314) at 9-position than that at 
other positions in anthracene [21], O2

- tends to attack 9-position 
in anthracene. Thereby, the addition of O2

- to 9-position in 
anthracene should be the initial and crucial step for anthracene 
oxidation. The subsequent step could be the elimination of –OH 
to get 9-oxy-10-anthryl radical (OAR) followed by O2

- addition to 

the 10-position in OAR and subsequent elimination of –OH to 
produce anthraquinone. The addition of Cl2

- to the 9-position in 
anthracene can also be considered, but subsequent elimination of 
HCl is impossible. Instead, Cl2

- tends to react with Na+ to get NaCl 
and Cl.. The resulting Cl. can attack the 9-position in anthracene, but 
the well known coupling reaction from 2 Cl. to produce stable Cl2 
is much more competitive. Since the distance between 2 chlorine 
atoms in Cl2 is substantially smaller than that between 2 carbon 
atoms in the 9- and 10-positions in anthracene, the addition of 
Cl2 to the 9- and 10-positions seems to be difficult. As a result, 
Cl2 prefers to add to the 1- and 2-positions to induce anthracene 
chlorination (Scheme 1). The superdelocalizablity of either the 
1-position (1.073) or 2-position (0.922) is much smaller than that 
of the 9-position in anthracene, leading to much lower reactivity 
of anthracene toward chlorination than toward oxidation in 
aqueous sodium hypochlorite solution. Phthalic acid (PA) is the 
most abundant byproduct and its yield steadily increased by 
prolonging the reaction time. Detection of isobenzofuran-1,3-
dione, 3- and 4- chlorophthalic acids (CPAs) indicates that both 
dehydration and chlorination of PA proceeded, as displayed in 
Scheme 2. The CPAs were not detected until the reaction for 120 
h, suggesting that PA chlorination is difficult.

Conclusions
The mechanisms for anthracene oxidation and chlorination were 
reasonably proposed by this investigation. The addition of O2

- to 
the 9-position in anthracene plays a crucial role in the formation 
of anthraquinone. According to the result, some coal conversion 
processes, especially mild coal oxidation, may involve in O2

- 
addition to active sites of CARs in coals. Selective coal oxidation to 
afford specific oxygen-containing aromatics, like anthraquinone, 
could be achieved by controlling the reaction conditions. Such 
a process not only provides a probe for understanding the 
structures of CARs in coals, but also facilitates obtaining valuable 
chemicals, especially oxygen-containing aromatics, from coals. 
In addition, converting CARs in liquid fuels to water-soluble 
oxygen-containing aromatics could be a promising approach for 
effectively removing CARs from liquid fuels.
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Total ion chromatograms of the methyl esterified products from anthracene oxidation in ASHCS at 30°C.Figure 1
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Total ion chromatograms of the methyl esterified products from anthracene oxidation in ASHCS at 40°C.Figure 2
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Total ion chromatograms of the methyl esterified products from anthracene oxidation in ASHCS at 50°C.Figure 3
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Peak Parent product
30°C 40°C 50°C

24 h 48 h 72 h 96 h 120 h 24 h 48 h 72 h 96 h 120 h 24 h 48 h 72 h 96 h 120 h
1 2-Chloroacetic acid 1.2 1.5 4.8 9.5 1.3 4.0 8.3 10.8 8.2
2 2,2-Dichloroacetic acid 0.4 1.4 2.2 3.4 1.2 1.1 2.1 2.9 2.1

3 2,2,2-Trichloroacetic 
acid 0.9 0.3 0.9 3.8 1.9 1.9 2.5 0.3 0.8

4 Malonic acid Trace 0.4 0.7 1.0 0.2 1.3 2.0 1.9 2.0

5 Isobenzofuran-1,3-
dione 1.7

6 Phthalic acid 1.3 17.9 34.9 39.7 33.5 0.1 0.8 3.6 12.1 12.1 6.1 29 40.1 41.6 39.0

7 2-(Ethoxycarbonyl)
benzoic acid 0.1 0.3 0.5 0.2 0.4 0.9 1.4 0.1 0.3 0.2 0.3

8 3-Chlorophthalic acid 0.1 0.7 0.3 1.3 0.5 6.3 5.6 5.0 0.4 1.8 1.6 1.8 1.8
9 4-Chlorophthalic acid Trace 0.3 0.3 0.6 0.3 5.6 1.9 1.6 0.1 0.5 0.5 0.5 0.5

10 Biphenyl-2,2'-
dicarboxylic acid 0.3 0.3 0.3 1.8 19.7 0.2 0.3 0.3

11 Anthrone 0.3 0.2 0.2 0.2 20.6 17.1 0.1 0.9 0.5 0.7
12 Anthraquinone 4.1 24.9 34.8 40.7 28.5 5.2 69.7 74.0 74.8 29.1 11.2 37.0 31.1 28.5 34.0
13 Chloroanthracene 0.1 1.3
14 Chloroanthracene 0.3 1.7 1.9
15 Pyromellitic acid 0.3 8.2 9.3 13.1 12.3 1.3 3.1 2.7 0.8 5.5 7.3 6.7 6.1
16 Chloroanthraquinone 0.1 0.7 1.1 0.8 1.0 0.7 2.4 1.2 0.9 0.3 0.4 0.7 0.6 0.6
17 Dichloroanthracene 0.8 6.8 10.2 2.8 5.5 2.3 4.7 4.7 0.4 7.2 3.1 16.1 3.3 3.2 4.3
18 Trichloroanthracene 0.1 1.9
19 Trichloroanthracene 0.5
20 Trichloroanthracene 0.4
21 Trichloroanthracene 0.1 0.6
22 Tetrachloroanthracene 0.2 0.8

Table 1 Yields (mol %) of the products from anthracene oxidation in ASHCS at different temperatures.

Time profiles of the yields of NCSCs and CSCs from anthracene oxidation in ASHCS at different temperatures.Figure 4
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Possible mechanisms for anthracene oxidation and chlorination in ASHCS.Scheme 1
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