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Description
The global transition towards a hydrogen-based economy 

underscores the need for efficient and sustainable technologies 
in hydrogen production, storage and gas separation. Traditional 
hydrogen production methods, such as Steam Methane 
Reforming (SMR) and coal gasification, have been associated 
with significant environmental consequences due to their 
reliance on fossil fuels [1]. To counter these effects, the focus 
has shifted to greener alternatives, with electrolysis powered by 
renewable energy emerging as a frontrunner. Electrolysis, a 
process that generates hydrogen by splitting water molecules, 
offers a carbon-neutral solution to meet the increasing demand 
for clean energy [2]. Its only byproducts are water and heat, 
making it a cornerstone in reducing greenhouse gas emissions 
and mitigating air pollution. However, the transition to a 
hydrogen-driven economy requires further advancements in 
hydrogen storage and gas separation technologies to ensure 
energy efficiency and environmental sustainability. Gas 
separation is integral to numerous industrial and environmental 
processes, particularly in the chemical and petrochemical sectors 
[3]. These industries are traditionally characterized by energy-
intensive methods, resulting in substantial operational costs and 
environmental impacts. The adoption of adsorption-based 
technologies offers a promising avenue to improve material and 
energy efficiency while minimizing ecological footprints [4].

Hydrogen storage
Efficient hydrogen storage is vital for the widespread adoption 

of hydrogen as a clean energy carrier. Current methods, including 
compressed gas, cryogenic liquids and hydride formation, each 
present distinct advantages and limitations [5]. Among these, solid 
adsorption methods stand out due to their scalability, safety and 
environmental benefits. Solid adsorbents like Metal-Organic 
Frameworks (MOFs), zeolites and carbon-based materials have 
gained prominence in hydrogen storage research. Activated 
Carbon (AC), particularly when derived from biomass, has 
emerged as a sustainable, cost-effective and efficient solution for 
hydrogen storage and gas separation applications [6]. Activated 
carbon is a versatile material characterized by its high surface 
area, porosity and tunable surface chemistry, making it highly 
effective in adsorption processes. Its affordability and adaptability 
position it as a vital component in advancing gas separation and 
storage technologies [7].

   Biomass-derived AC, produced from waste materials such as 
olive cores, rice husks and cashew nut shells, represents a 
sustainable approach to material synthesis. By transforming 
agricultural by-products into high-value materials, this method 
aligns with the principles of sustainable development and 
promotes circular economies. Cashew nut shells, an abundant 
agricultural by-product, serve as a renewable and cost-effective 
raw material for AC synthesis. The annual global production of 
activated carbon is estimated to reach 100,000 tons, with a 
substantial portion sourced from agricultural residues and waste 
materials. Utilizing such waste not only addresses disposal 
challenges but also creates value-added products for industrial 
applications [8].

Synthesis and characterization of biomass-derived
activated carbon

The potassium hydroxide activation method is a proven 
technique for synthesizing activated carbon from biomass 
sources like cashew nut shells. This process integrates waste 
management with advanced material science, offering dual 
benefits of environmental mitigation and resource valorization.

Structural and morphological properties: Techniques like 
Fourier-Transform Infrared (FT-IR) spectroscopy, Raman 
spectroscopy, Scanning Electron Microscopy (SEM) and Ther-
mogravimetric Analysis (TGA) provide detailed insights into its 
properties [9].

High adsorption efficiency: Under high-pressure conditions, 
the material demonstrates significant hydrogen adsorption 
capabilities, making it suitable for hydrogen storage and gas 
purification.

Sustainability: The utilization of agricultural waste contributes 
to reducing environmental footprints and promoting circular 
economic practices [10].

Conclusion
This study highlights the integration of sustainable waste 

utilization with advanced hydrogen storage and gas separation 
technologies. By transforming agricultural by-products into 
efficient, cost-effective materials, biomass-derived activated 
carbon demonstrates its potential to address pressing industrial 
and environmental challenges. The findings prepare for futher
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further innovations in hydrogen economy infrastructure, 
reinforcing the critical role of activated carbon in achieving 
sustainability goals. The transition to a hydrogen-based economy 
requires continued efforts to develop materials and technologies 
that optimize efficiency while minimizing environmental impacts. 
As research progresses, the adoption of biomass-derived 
activated carbon and similar innovations will play a pivotal role 
in advancing global sustainability initiatives.
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