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Abstract
The diastereoselective catalytic hydrogenation (DCH) by
heterogeneous metallic catalysts uses a covalently bound
chiral auxiliary to induce the chirality. It remains an active
synthetic methodology in the asymmetric synthesis of chiral
products and may proceed with high diastereoselectivity.
This review contains an account of previous as well as
recent developments in catalytic, asymmetric processes
reported for the reduction of C=C, C=O, and C=N bonds. The
use of a chiral auxiliary group has also been successfully
applied to the hydrogenation of aromatic and
heteroaromatic rings. The choice of the chiral auxiliary was
found to play a key role in the asymmetric hydrogenation.
The results could be explained in terms of steric effect, with
a preferred conformation of the adduct substrate and the
addition occurring from the less bulky side. The catalytic
metal, the support and the presence of additives were also
found to have a significant influence.

Keywords: Diastereoselectivity; Hydrogenation;
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Introduction
Addition of hydrogen to multiple bonds either with the 

application of reducing agent (reduction) or by using a catalyst 
(catalytic) is known as hydrogenation. Stoichiometric methods 
like alkali metal hydrides (LiAlH4, NaBH4, and NaCNBH3) are 
successfully employed for the reduction of a wide range of 
aldehydes and ketones [1–6]. However, their application are 
limited due to the stoichiometric nature of such processes, 
tedious work-up procedures, and the hazards associated with 
handling of highly reactive hydride reagents. Catalytic methods 
are more attractive and reactive than the stoichiometric 
methods, because catalyst containing reaction used for catalytic 
amount of species. But in stoichiometric methods, all substrates 
are taken at reagent level.

In particular, the use of molecular H2 as the reducing agent 
allows reaching 100%  atom efficiency. Early hydrogenation 
process employed heterogeneously catalysed processes like 
Raney nickel, Ni and Cu chromite, which are operated at drastic 
conditions with temperatures in the range 200°C–300°C and 
H2 pressures of 140–300 bar [7–11]. Therefore, side reactions 
and degradation of the reaction substrates and products may 
occur. With these objectives, the search for new catalyst 
formulations has dominated the heterogeneous catalysis 
research field, with the majority of works featuring novel catalyst 
designs. Interestingly, heterogeneous catalysts developed during 
the last decade share many common properties with their 
homogeneous counterparts. Hydrogen gas is the ideal reducing 
agent in terms of cost and atom efficiency, and has very broad 
applicability for the reduction of carbonyls. Credit goes to 
Wilkinson for the development of “Transfer Hydrogenation 
Methods” which caused an industrial revolution [12–17]. Dow 
pharma reported ketone hydrogenation in IPA using di 
(phosphine) RuCl2 (diamine) precatalysts and base as a practical 
alternative to NaBH4 for bulk scale. In the early 1990s, Noyori’s 
catalysts have rewritten the hydrogenation methods with its 
asymmetric hydrogenation [18–26].
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A reaction in which one of a set of stereoisomers is formed 
predominantly is known as stereoselective Reaction. This may 
be further specialized into diastereoselective or enantioselective. 
An enantioselective reaction is one in which one enantiomer is 
formed in preference to the other, in a reaction that creates an 
optically active product from an achiral starting material, using 
either a chiral catalyst, an enzyme or a chiral reagent. The 
enantiomeric excess (ee) is defined as the excess of one 
enantiomer over the other generated in an enantioselective 
reaction and is usually expressed as a percentage of the whole. It 
usually gives a measure of the efficiency of the enantioselective 
reaction. The optical purity or the enantiomeric excess (ee%) of a 
sample can be determined as follows:

Optical purity= % enantiomeric excess=% enantiomer1-% 
enantiomer2

                          =100 [α]mixture/[α] pure sample
                  ee% =100 ([R]-[S])/([R]+[S])
Where [R] = concentration of the R-isomer [S] = concentration 

of the S isomer

While a diastereoselective reaction is one in which one 
diastereomer is formed in preference to another, establishing a 
preferred relative stereochemistry. In this case, either two or 
more chiral centers are formed at once such that one relative 
stereochemistry is favored.

Mechanism of Diastereoselective Catalytic 
Hydrogenation

The actual pathway through which the DCH reaction proceeds 
may either be homogeneous or Heterogeneous.

Heterogeneous catalysis

On solids, the accepted mechanism is the Horiuti-Polanyi 
mechanism:
• Binding of the unsaturated bond, and hydrogen dissociation

into atomic hydrogen onto the catalyst
• Addition of one atom of hydrogen; this step is reversible
• Addition of the second atom; effectively irreversible under
hydrogenating conditions.

Homogeneous catalysis

In many homogeneous hydrogenation processes, the metal
binds to both components to give an intermediate alkene-metal 
(H2) complex. The general sequence of reactions is assumed to 
be as follows or a related sequence of steps:
• Binding of the hydrogen to give a dihydrid complex via 

(preceding the oxidative addition of H2 is the formation of a 
dihydrogen complex):

• Lnm + H2 → lnmh2
• Binding of alkene:
• Lnm(η2h2) + CH2=CHR → Ln-1MH2(CH2=CHR) + L
• Transfer of one hydrogen atom from the metal to 

carbon (migratory insertion)

• Ln-1MH2(CH2=CHR) → Ln-1M(H)(CH2-CH2R)
• Transfer of the second hydrogen atom from the metal to 

the alkyl group with simultaneous dissociation of the 
alkane ("reductive elimination")

•  Ln-1M(H)(CH2-CH2R) → Ln-1M + CH3-CH2R

Mechanism of Diastereoselective
Catalytic Hydrogenation

Heterogeneous catalytic asymmetric hydrogenation is a
powerful method for the synthesis of optically active molecules
of high interest in pharmaceuticals, agrochemicals and in
fragrant and flavored substance either by using enantioselective
or diastereoselective route. However enantioselective route is of
limited use because a very few catalytic systems have been
successful, although exclusive research has been conducted in
this direction.

The diastereoselective catalytic hydrogenation can be carried
out by using

• Chiral auxiliary
• Chiral substrate

Chiral auxiliary is difficult to remove so chiral substrate is
better to use. Various functional groups have been
hydrogenated over metallic heterogeneous catalysts for the
synthesis of many active compounds and this methodology has
been the subject of review articles [27,28]. In present work our
intention is to report the latest developments on
diastereoselective hydrogenation with heterogeneous catalysts.
For this purpose, we shall give an overview of few
hydrogenation reactions of molecules containing C=C, C=O; and
C=N bonds as well as aromatic substrates.

Diastereoselective Catalytic
Hydrogenation (Dch) of C=C Bonds

By using DCH method, Izumiya et al. [29–31] synthesized
chiral dehydrodiketopiperazines from the condensation of
cyclodipeptides (containing the (S)-alanine moiety) with
aldehydes which on hydrolysis yield amino acid with high optical
purities. Aminobutyric acid, valine, leucine, phenylalanine and
tryptophane could be obtained with ee in the range of 71–99%.
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Cyclodipeptide was prepared by Leeming et al. [32] by using (S) -
aspartic acid and was acetylated and condensed with different
aromatic aldehydes to give a Z-alkene. The hydrogenation over
5% Pd/C gave the diketopiperazines in high yield with
diastereoisomeric excesses >92% in favor of the cis compound.
Hydrolysis led to the newly formed amino acid, which could be
separated from the aspartyl unit by crystallization and pH
control (Figure 1).

Figure 1: Diastereoselective hydrogenation of
diketopiperazines.

Optically active deuterated amino acids were synthesized [33]
by using this DCH method as

Figure 2: Deuteration of a diketopiperazine derivative.

Synthesis of 2, 4, 5- trisubstituted piperidines by DCH of C=C
from (R)--amino esters and methyl acrylate, was carried out via
biological active valuable intermediates for synthetic
compounds [34, 35]. A single isomer with (2R, 4R, 5S)
configuration was synthesized from DCH over Raney nickel
(Figure 3).

Figure 3: Diastereoselective hydrogenation of -amino esters.

Racemic mixtures of 1-alkyl-2, 3-dimethyl indenol derivatives
was obtained by the DCH of some indene derivatives on
alumina-supported Pd catalysts [36] (Figure 4).

Figure 4: Hydrogenation of Indenols.

Diastereoselective Hydrogenation of C=O
Bonds

The stereoselective hydrogenation of carbonyl compounds is 
a very interesting reaction for the synthesis of flavour and 
fragrance compounds and was widely carried out by Firmenich 
(Figure 5) with the application of Ru complex with cinchona 
based chelating legands as catalyst [37]. Polysantol, dartanol and 
nirvanol were efficiently synthesized by DCH.

Figure 5: Plausible Mechanism of Reduction of Aldehyde to 
Alcohol under Organometallic Catalyst Condition.

Xuefeng Tan et al with the help of Dynamic Kinetic Resolution 
(DKR) Strategy have developed a synthetic method for the 
preparation of chiral fluoro alcohols. Both high 
enantioselectivities and diastereoselectivities were achieved in 
the Ir-catalyzed hydrogenation of α-fluoro ketones via 
intramolecular C−F···Na interaction [Figure 6] in the hydride 
transfer step which is responsible for the diastereomeric control.
[39].
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Figure 6: Synthetic Method for t he Preparation of  Chiral 
Fluoro Alcohols via DKR.

Rhodium complex Cy(CAAC)Rh(cod)Cl catalyzed DCH of benzene 
ring of indolin-2-ones (2-oxindoles) and 3,4- dihydroquinol-2-
ones was carried out to a saturated cyclohexane ring with the 
diastereoselectivity of twenty-one hexahydroindolin-2(3H)-ones 
(70−99% yield, dr=83/17 to >99/1) and twelve octahydro2(1H)-
quinolinones (87−96% yield, dr = 64/36 to >99/1) with the major 
diastereoisomer exhibiting the hydrogen atoms in an all-cis 
arrangement. This represent the high tolerance toward 
functional groups and the compatibility with existing stereogenic 
centers of the hydrogenation protocol [40] (Table 1).

Table 1: Diastereoselective Rhodium-Catalysed Hydrogenation of 2 Oxindoles and 3,4-Dihydroquinolones.

Diastereoselective Rhodium-Catalyzed Hydrogenation of 2Oxindoles and 3,4-Dihydroquinolones

General reaction

Scheme-I. Diastereoselectivity of the RhCatalyzed Hydrogenation 

of Oxindoles
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SCHEME-2. Induced Diastereoselectivity (5b−5k)

of the RhCatalyzed Hydrogenation of Dihydroquinolones

Diastereoselective Hydrogenation of
Aromatic Compounds

Besson et al. studied the diastereoselective hydrogenation of
o-toluic acid with several chiral auxiliaries. The cis stereoisomers
were formed predominantly, and the best facial differentiation
was achieved using proline ester [41] and pyroglutamic acid
methyl ester [42], (Figure 7).

 Polycyclic aromatic hydrocarbons (PAHs) are thermodynamic 
stable due to aromaticity and therefore are difficult substrates 
for hydrogenation. Bo Han et al reported the first chromium-
and cobalt-catalyzed, regiocontrolled hydrogenation of APHs at 
ambient temperature [43] (Table 2).

Table 2: Hydrogenation of PAHs

Hydrogenation of PAHs

Scheme.1 Transition-Metal-Catalyzed Regioselective
Hydrogenation of PAHs[43]
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Scheme 2. Chromium-Catalyzed Hydrogenation of

PAHs by Regioselective Reduction of One Terminal 
Carbocycle [43].
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Scheme 3. Cobalt-Catalyzed Hydrogenation of PAHs by

Regiocontrolled Reduction of Two Terminal Carbocycle[43].

Table 3: Diastereoselective catalytic hydrogenation of the pyridine ring and other N-containing rings.

Diels-Alder reactions were largely described [44,45].

Hydrogenation of (S)-N-(tert-butyl)-1,2,3,4-tetrahydro-3-
isoquinolinecarboxamide

[46].
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Hydrogenation of monosubstituted indanes [47] .

Synthesis of

3-PPP ((3-hydroxyphenyl)-N-(1-propyl)-piperidine) [48].

Selective cis-hydrogenation of a disubstituted pyridine [49].

Electroreduction of pyridine dicarboxylic ester [50].

Partial reduction of pyridine derivatives with borohydride

[51–53].

Chiral auxiliaries used in diastereoselective hydrogenation of
nicotinoyl derivativesl. [54]
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Hydrogenation of N-picolinoyl-(S)-proline methyl ester [55,56].

Hydrogenation of 2-methyl-N-icotinoyl-(S)-proline methyl ester
[54].

Hydrogenation of pyridyl-2-phenylacetamide [57].

Hydrogenation of a furan derivative [58].

Precursor of non actic acid.

Diastereoselective hydrogenation of substituted pyrrole
derivatives.

Ru-catalyzed ring-closing metathesis.

Journal of Organic & Inorganic Chemistry
ISSN 2472-1123 Vol.7 No.5:7242

2021

© Copyright iMedPub 9



Synthesis of cis-2-hydroxycyclohexylamine by hydrogenation of
an imine.

Diastereoselective Hydrogenation of Chiral Imines.

Synthesis of Rasagiline and Tamsulosin Precursors

Iron-Catalyzed Imine Hydrogenation
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Industrial Applications
Catalytic hydrogenation has diverse industrial uses. Most 

frequently, industrial hydrogenation relies on heterogeneous 
catalysts.

Food industry
The largest scale application of hydrogenation is for the 

processing of vegetable oils. Typical vegetable oils are derived 
from polyunsaturated fatty acids (containing more than one 
carbon-carbon double bond). Hydrogenation reduces or 
eliminates these double bonds. The goal is to turn liquid oils into 
solid or semi-solid fats that can replace butter and shortening in 
spreads, candies, baked good and other products. Partial 
hydrogenation of typical plant oil to a typical component of 
margarine. Most of the C=C double bonds are removed in this 
process, which elevates the melting point of the product.

Petrochemical industry
In petrochemical processes, hydrogenation is used to convert 

alkenes and aromatics into saturated alkanes (paraffins) and 
cycloalkanes (naphthenes), which are less toxic and less reactive. 
Relevant to liquid fuels that are stored sometimes for long 
periods in air, saturated hydrocarbons exhibit superior storage 
properties. On the other hand, alkenes tend to form 
hydroperoxides, which can form gums that interfere with fuel 
handling equipment. For example, mineral turpentine is usually 
hydrogenated. Hydrocracking of heavy residues into diesel is 
another application. In isomerization and catalytic reforming 
processes, some hydrogen pressure is maintained to 
hydrogenolyze coke formed on the catalyst and prevent its 
accumulation.

Organic chemistry
Hydrogenation is a useful means for converting unsaturated 

compounds into saturated derivatives. Substrates include not 
only alkenes and alkynes, but also aldehydes, imines, and 
nitriles, which are converted into the corresponding saturated 
compounds, i.e. alcohols and amines. Thus, alkyl aldehydes, 
which can be synthesized with the oxo process from carbon 
monoxide and an alkene, can be converted to alcohols. E.g. 1-
propanol is produced from propionaldehyde, produced from 
ethene and carbon monoxide. Xylitol, a polyol, is produced by 
hydrogenation of the sugar xylose, an aldehyde.

Primary amines can be synthesized by hydrogenation of 
nitriles, while nitriles are readily synthesized from cyanide and a 
suitable electrophile. For example, isophorone diamine, a 
precursor to the polyurethane monomer isophorone 
diisocyanate, is produced from isophorone nitrile by a tandem 
nitrile hydrogenation/reductive amination by ammonia, wherein 
hydrogenation converts both the nitrile into an amine and the 
imine formed from the aldehyde and ammonia into another 
amine.

The application of diastereoselective hydrogenation catalyzed 
by heterogeneous catalysts for the asymmetric synthesis of 
organic compounds is illustrated in the reduction of several

functional groups. In that approach, the chiral information is
provided by the prior attachment of a chiral auxiliary to the
substrate to be hydrogenated. The optically active hydrogenated
product is then disconnected from the chiral auxiliary. Proper
choice of the inductor, of the catalyst and of reaction conditions
may result in high diastereoselectivities.

Conclusion
The strategy of liquid-phase diastereoselective hydrogenation

over a metallic catalyst is a useful method for the synthesis of
many optically active compounds. Examination of the literature
reveals that the diastereoselectivity is dependent on the chiral
auxiliary, the catalyst (metal, support) and the solvent used.
Diasterioselective heterogeneous catalytic hydrogenation
involves the addition of hydrogen atoms from the catalyst
surface to the adsorbed substrate molecule and the electron-
rich part of the molecule approaches the metal from the least
hindered side. The selectivity in the diastereoselective
hydrogenation is therefore controlled by the conformation of
the substrate-chiral auxiliary moiety and its adsorption on the
catalyst. A high selectivity can be achieved if a strong effect of
steric hindrance is exerted by the chiral auxiliary, which will
allow the adsorption from one side of the reactive conformation
opposite to the bulky group and at the same time prevent the
adsorption from the other side. It is also important that the
rotations around the bonds of connection of the chiral auxiliary
are prevented. Rigid structures, eventually fixed by
intramolecular hydrogen bonding to form polycyclic molecules,
are favorable factors influencing the diastereoselectivity.
Electronic interactions between the functional groups on the
molecule and the metal surface may participate to the specific
adsorption.

The metal also displays an appreciable effect on the
selectivity, though it is often not predictable which metal will
provide the best diastereoselectivity. Palladium is generally
preferred for C=C hydrogenation, whereas rhodium and
ruthenium are used for aromatic or heteroaromatic compounds.
There are numerous examples, where one metal was found to
afford high de, while others showed little selectivity. The extent
of diastereoselectivity was also found to be dependent on the
modification of the catalyst by additives (amines, tartaric acid,
cinchonidine) or by the secondary or tertiary amines formed
during diastereoselective hydrogenation of N-heterocycles. A
priori choice of a modifier, which is not necessarily chiral, is not
yet possible. The solvent displays only a small effect on
diastereoselectivity in most cases. However, the solvent strongly
influences the reaction rate.
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